Some Properties of the Augmented Lagrangian in Cone Constrained Optimization
نویسندگان
چکیده
A large class of optimization problems can be modeled as minimization of an objective function subject to constraints given in a form of set inclusions. We discuss in this paper augmented Lagrangian duality for such optimization problems. We formulate the augmented Lagrangian dual problems and study conditions ensuring existence of the corresponding augmented Lagrange multipliers. We also discuss sensitivity of optimal solutions to small perturbations of augmented Lagrange multipliers.
منابع مشابه
Convergence Analysis of the Augmented Lagrangian Method for Nonlinear Second-Order Cone Optimization Problems
The paper focuses on the convergence rate of the augmented Lagrangian method for nonlinear second-order cone optimization problems. Under a set of assumptions of sufficient conditions, including the componentwise strict complementarity condition, the constraint nondegeneracy condition and the second order sufficient condition, we first study some properties of the augmented Lagrangian and then ...
متن کاملExact Penalty Methods
Exact penalty methods for the solution of constrained optimization problems are based on the construction of a function whose unconstrained minimizing points are also solution of the constrained problem. In the rst part of this paper we recall some deenitions concerning exactness properties of penalty functions, of barrier functions, of augmented Lagrangian functions, and discuss under which as...
متن کاملEstimating the Parameters in Photovoltaic Modules: A Constrained Optimization Approach
This paper presents a novel identification technique for estimation of unknown parameters in photovoltaic (PV) systems. A single diode model is considered for the PV system, which consists of five unknown parameters. Using information of standard test condition (STC), three unknown parameters are written as functions of the other two parameters in a reduced model. An objective function and ...
متن کاملAn Augmented Lagrangian Method for Optimization Problems in Banach Spaces
We propose a variant of the classical augmented Lagrangian method for constrained optimization problems in Banach spaces. Our theoretical framework does not require any convexity or second-order assumptions and allows the treatment of inequality constraints with infinite-dimensional image space. Moreover, we discuss the convergence properties of our algorithm with regard to feasibility, global ...
متن کاملLog-Sigmoid Multipliers Method in Constrained Optimization
In this paper we introduced and analyzed the Log-Sigmoid (LS) multipliers method for constrained optimization. The LS method is to the recently developed smoothing technique as augmented Lagrangian to the penalty method or modified barrier to classical barrier methods. At the same time the LS method has some specific properties, which make it substantially different from other nonquadratic augm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Oper. Res.
دوره 29 شماره
صفحات -
تاریخ انتشار 2004